[This question paper contains 4 printed pages

Your Roll

Sr. No. of Question Paper: 3026

Unique Paper Code : 32167601

Name of the Paper : DSE-III (Industrial and

Environmental Microbiology)

Name of the Course : B.Sc. (Honours) Botany

Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions in all.
- 3. Question no. 1 is compulsory.
- 4. All parts of a question must be answered together.
- 5. Draw well-labelled diagram wherever necessary.
- 1. (a) Define any **five** of the following: $(5 \times 1 = 5)$
 - (i) Extracellular enzymes
 - (ii) Impeller

(III) Selective medium
(iv) Psychrotrophs
(v) Lyophilization
(vi) Eutrophication
Expand the following (any five): $(5 \times 1 = 5)$
(i) ATCC
(ii) CFU
(iii) IMTECH
(iv) PDA
(v) TOC
(vi) GRAS
Match the following: $(5 \times 1 = 5)$
(i) Nitrification (a) Charles Chamberland
(ii) Autoclave (b) Bacillus cereus
iii) Phosphate solubilizing (c) Zoogloea sp. microorganism
iv) Casein hydrolysis (d) Pseudomonas sp.
(v) Trickling filter (e) Nitrosomonas sp.

- 2. Write short notes on the following (any three): $(3\times5=15)$
 - (i) Factors affecting aeromicroflora
 - (ii) Bacterial growth curve
 - (iii) Role of microbes in industry
 - (iv) Cell Disruption
- 3. Differentiate between the following (any three): $(3\times5=15)$
 - (i) Batch fermentation and Continuous fermentation
 - (ii) Freeze drying and Spray drying
 - (iii) BOD and COD
 - (iv) Centrifugation and Filtration
- 4. (a) Briefly discuss different methods of enzyme immobilization. (8)
 - (b) What are HFCS? What is the industrial importance of immobilization of glucose isomerases? (7)
- 5. (a) Discuss in detail the industrial production of citric acid. (8)

- (b) Describe different methods for isolating soil microorganisms. (7)
- 6. (a) What are total coliforms? Discuss evaluation methods (any three) for detecting coliforms in drinking water. (8)
 - (b) Discuss the primary and secondary methods for treatment of sewage water? (7)
- 7. (a) What is meant by up stream processing? Discuss the steps involved in up stream processing.

(8)

(b) Explain the structure and working of fluidized bed reactor. (7)

[This question paper contains 4 printed pages.] Two you

Your Roll No....

Sr. No. of Question Paper: 3136

Unique Paper Code : 32167608

Name of the Paper : Bioinformatics

Name of the Course : B.Sc. (H) Botany

Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions in all.
- 3. Question No. 1 is compulsory.
- 4. All parts of the question must be answered together.
- 1. (a) Define the following (any five): $(5 \times 1 = 5)$
 - (i) Ras Mol
 - (ii) Scoring Matrix
 - (iii) PubMed
 - (iv) Metabolomics
 - (v) Unrooted tree
 - (vi) Phylogram

2.

(b)	Expa	and of the following (any five):	$(5\times1=5)$	
	(i)	QSAR		
	(ii)	NIH		
	(iii)	MIAME		
	(iv)	ORF		
	(v)	ZINC		
	(vi)	OTU		
(c)	Give	e an example of each:	$(5\times1=5)$	
	(i)	Languages in bioinformatics.		
	(ii)	Metabolic database.		
	(iii)	Disease Database.		
	(iv)	Chemical database.		
	(v)	Protein structure Database.		
Dif	fere	ntiate between the following (any	three). (3×5=15)	
(a)	Gen	omics and Proteomics		
(b)	(b) Bank IT and Sequin			
(c)	PAN	M and BLOSUM	•	
(d)	Mor	nophyletic and Polyphyletic trees		
(e)	Glo	bal alignment and Local alignment		

- 3. Write short notes on (any three): $(3\times5=15)$
 - (a) Salient features of Swiss-Prot
 - (b) Sequence file formats
 - (c) Next generation Sequencing
 - (d) Gene prediction methods
 - (e) Microbial genome applications
- 4. (a) Explain various approaches for Computer-aided drug designing and role of structural bioinformatics in drug discovery.
 - (b) What do you understand by Bioinformatics? Discuss its applications, scope and limitations.

(7)

- 5. (a) What do you understand from biological databases? Explain Primary, Secondary and Composite databases with suitable examples. (8)
 - (b) Elaborate various data submission and retrieval tools of NCBI and EMBL. (7)
- 6. (a) What is Sequence alignment? Explain Pairwise and multiple sequence alignment with its significance. (8)
 - (b) Comment on molecular phylogeny and give P.T.O.

comparative account of Maximum Parsimony, Maximum Livelihood and Neighbour Joining method of phylogenetic tree construction. (7)

- 7. (a) What is BLAST? With the help of schematic diagram, briefly explain the different types of BLAST. (8)
 - (b) Discuss different level of Protein structures and describe various methods for protein structure prediction and modelling. (7)
- 8. (a) Explain small molecule databases with suitable examples. (8)
 - (b) What is DDBJ? Give an account of various resources available at DDBJ. (7)